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Dynamic categorization rules alter
representations in human visual cortex

Margaret M. Henderson 1,2 , John T. Serences 3,4 &
Nuttida Rungratsameetaweemana5,6

Everyday tasks often require stimuli to be categorized dynamically, such that
an identical object can elicit different responses based on the current decision
rule. Traditionally, sensory regions have been viewed as separate from such
context-dependent processing, functioning primarily to process incoming
inputs. However, an alternative view suggests sensory regions also integrate
inputs with current task goals, facilitating more efficient information relay to
higher-level areas. Here we test this by asking human participants to visually
categorize novel shape stimuli based on different decision boundaries. Using
fMRI andmultivariate analyses of retinotopically-defined visual areas, we show
that cortical shape representations become more distinct across relevant
decision boundaries in a context-dependent manner, with the largest changes
in discriminability observed for stimuli near the decision boundary. Impor-
tantly, these modulations are associated with improved task performance.
These findings demonstrate that visual cortex representations are adaptively
modulated to support dynamic behavior.

Perceptual categorization is a fundamental cognitive ability that allows
us to organize and understand the myriad stimuli encountered in our
sensory environment. By forming categories, observers are able to
generalize existing knowledge to new incoming inputs, facilitating
efficient perception and decision-making1,2. Within the visual system,
categories can capture divisions within the natural structure of a sti-
mulus space3 or can reflect the learning of arbitrary discrete bound-
aries along stimulus dimensions that would otherwise be represented
continuously4. At the same time, categorization in the real world is a
highly dynamic cognitive process, in which the category membership
of stimuli may change over time. For example, when making a cate-
gorical decision about produce at the farmer’s market, depending on
our goals we might think of carrots in the same category as lettuce
(vegetables) or the same category as tangerines (orange-colored
items). Perceptual categorization is thus also tightly connected with
flexibleprioritization of information basedon current task demands5–7.
Within contexts where task goals change dynamically over time, the

neural mechanisms supporting categorization of sensory stimuli are
not yet understood.

Past work has provided some insight into how category learning
impacts representations of sensory stimuli. Behaviorally, learning to
categorize stimuli in a continuous feature space can lead to perceptual
changes such as an increase in sensitivity to changes along a relevant
stimulus dimension, and an increase in perceptual discriminability of
stimuli belonging to different categories8–10. Such changes are also
reflected in the brain—electrophysiology studies in macaques have
demonstrated that after learning of a categorization task, neurons in
inferotemporal cortex (ITC) become more strongly selective for
diagnostic dimensions of stimuli11, and neural populations in ITC also
contain information encoding the learned category status of
stimuli12,13. In human functional magnetic resonance imaging (fMRI)
studies, learning to discriminate object categories has been shown to
increase neural responses to objects in extrastriate cortex14,15 and lead
to sharpening of visual representations as measured with fMRI
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adaptation16–18. Moreover, recent work has shown that learning a
decision boundary can alter representations of orientation in early
visual areas, with representations becoming biased away from the
decision boundary19. At the same time, other work has suggested that
the effects of category status on sensory representations are more
prominent in prefrontal cortex (PFC) than visual areas. This suggests
that the primary role of visual areas may be restricted to perceptual
analysis, rather than decision-related processing12,20,21.

From an efficient processing perspective, it is plausible that visual
areas play a more active role in decision-making, potentially encoding
decision-related variables, task contexts, choices, or motor outcomes.
Such coding would enable visual areas to process sensory inputs in a
manner conducive to downstream readout. Emerging evidence from
rodent studies supports this view. For instance, activity that was
thought to reflect random fluctuations in neural representations
within sensory areas has been linked to choice-relatedmotor activities
and decision outcomes22,23. Furthermore, recent findings indicate that
early sensory areas robustly encode task context variables, such as
expectations and decision rules, during dynamic decision-making
tasks24,25. Yet, the extent to which human sensory areas similarly code
for task-related variables and adapt their representations based on
contextual changes is unclear.

In addition, the mechanisms by which categorical decision-
making flexibly shapes neural representations, particularly in
tasks necessitating the switching between distinct decision rules,
are not well understood. Prior work has demonstrated that neural
populations in PFC can dynamically encode different boundaries
depending on the currently relevant task rule26,27, providing one
potential neural mechanism for dynamic decision-making. Simi-
larly, a human neuroimaging study using novel objects suggested
that representations in frontoparietal areas can encode different
category distinctions between objects depending on their task
relevance28. This study also found evidence for similar (albeit
weaker) effects in the lateral occipital complex (LOC), suggesting
that representations in visual areas may also be modified by task-
relevance. Thus, it remains an open question whether and how
varying task contexts interact with representations in visual cor-
tex, as well as how these modulations may contribute to down-
stream task performance.

Here we address these gaps by investigating how neural
responses in human visual cortex flexibly adapt to dynamic task
contexts, as induced by varying categorization rules. We hypo-
thesized that task context modulates sensory representations
such that changes in the decision boundary are actively inte-
grated during the early analysis of sensory information. To
examine the effects of categorization within an abstract stimulus
space, we generated a two-dimensional space of shape stimuli29,30

that were viewed by human participants undergoing fMRI scan-
ning. Participants categorized shapes according to different rules:
linear boundaries (Linear-1 and Linear-2 tasks) or a non-linear
boundary (Nonlinear task). These task contexts were interleaved
across scanning runs, necessitating real-time cognitive adaptation
to distinct categorization requirements applied to physically
identical stimuli. Each task incorporated both “easy” and “hard”
trials drawn from distinct locations in the shape space, enabling
us to concurrently examine the influence of perceptual difficulty
on decision processes. Using multivariate decoding methods in
retinotopically-defined visual areas, we measured shape repre-
sentations in each categorization task and examined how repre-
sentations differed across task contexts. We predicted that shape
representations would be more discriminable across a given
decision boundary when that boundary was relevant for the cur-
rent task. Findings from our neural data are in line with this
account. Importantly, we further show that an increase in neural
discriminability is linked to improved task performance.

Results
Dynamic shape categorization task
We trained 10 human participants to perform a shape categorization
task while in the fMRI scanner, with each participant performing 3
scanning sessions that each lasted 2 h (Fig. 1A). Shape stimuli varied
parametrically along two independent axes, generating a two-
dimensional shape space, and each condition of the task required
shapes to be categorized according to either a linear boundary (Linear-
1 and Linear-2 tasks) or a nonlinear boundary that required grouping
together of non-adjacent quadrants (Nonlinear task). These different
categorization tasks were performed during different scanning
runs within each session, meaning that participants needed to flexibly
apply different decision rules depending on the task condition for the
current run (seeMethods). Each task included amixture of “easy” trials
and “hard” trials. On the “easy” trials, a common set of 16 shapes,
making up a 4 × 4 grid which we refer to as themain grid (black dots in
Fig. 1B), were shown in all tasks, while on “hard” trials, shapes were
sampled from portions of the shape space near the active boundary,
which made the current task more challenging (light gray dots
in Fig. 1B).

To verify the two-dimensional structure of our shape space, we
used an image similarity analysis based on GIST features31 (see Meth-
ods) to assess the perceptual similarity between shape stimuli. As
expected, a principal components analysis (PCA) performed on the
GIST features revealed a two-dimensional grid structure, with the two
shape space axes oriented roughly orthogonal to one another in PC
space (Fig. 1C). In addition,measuring the linear separability (based on
between-category versus within-category Euclidean distances; see
Methods) of shapes across each category boundary based on GIST
features revealed that shapes were most separable across the Linear-2
boundary, followed by the Linear-1 boundary, with lowest separability
for theNonlinear boundary (Fig. 1D). A similar pattern was foundwhen
computing separability using features from a self-supervised deep
neural network model (SimCLR32; see Methods), suggesting that these
relationships held even when considering a broader set of image fea-
tures. The low separability of the Nonlinear categories relative to the
Linear-1 and Linear-2 categories is consistent with the Nonlinear
boundary being nonlinear in shape space.

Across participants, behavioral accuracy (Fig. 1E) was highest for
the Linear-2 task (0.86 ±0.02; mean± SEM across 10 participants),
followed by the Linear-1 task (0.83 ±0.01) and the Nonlinear task
(0.80±0.01). A repeated measures ANOVA revealed a main effect of
task (F(2,18) = 13.22, p < 0.001; p-values obtained using permutation
test; see Methods), and post-hoc tests showed that accuracy was sig-
nificantly higher for both of the linear tasks versus the Nonlinear task
(Linear-1 vs. Nonlinear: t(9) = 2.19, p =0.024; Linear-2 vs. Nonlinear:
t(9) = 4.98, p =0.002; paired t-tests with permutation; see Methods),
and higher for the Linear-2 task versus the Linear-1 task (Linear-1
vs.Linear-2: t(9) = −3.00,p =0.001). This advantage for the Linear-2 task
is consistent with the high relative separability across the Linear-2
boundary based on image features shown in the previous analysis
(Fig. 1D). In terms of response times (RTs), a significant main effect
of task was also found (F(2,18) = 3.94, p = 0.036; p-values obtained
using permutation test). No difference in RTs between the Linear-1 and
Linear-2 tasks was observed, but RTs were significantly slower for
the Nonlinear task than the Linear-1 task (t(9) = −3.08, p =0.012).
In addition to these differences across tasks, we also observed a
consistent difference between performance on the easy and hard
trials within each task (Fig. 1F), which was expected based on the
task design. Accuracy was significantly higher on easy versus hard
trials within each task (Linear-1: t(9) = 11.05, p = 0.002; Linear-2:
t(9) = 7.88, p = 0.002; Nonlinear: t(9) = 15.37, p =0.002), and RT was
significantly faster on easy versus hard trials within each task (Linear-1:
t(9) = −7.48, p = 0.002; Linear-2: t(9) = −9.38, p = 0.002; Nonlinear:
t(9) = −4.92, p = 0.003).
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Binary classification of shape representations
Next, we examined the neural representations of shape stimuli in
each task, under the hypothesis that shape representations would
differ across task conditions in accordance with the changing
decision boundary. To achieve this we usedmultivariate classification to

analyze single-trial voxel activation patterns from retinotopically
defined ROIs (Fig. 2). First, we trained a series of binary classifiers to
predict the category of the shape shown on each trial, according to each
of the three decision boundaries, using data from each task separately
(Fig. 2A–C). These binary classifiers provide an estimate of the
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Fig. 1 | Stimulus set, task design, and behavioral performance. A Two-
dimensional shape space used for categorization tasks. Shapes are generated using
radial frequency contours29,30 that vary along two independent dimensions, refer-
red to as axis 1 and axis 2. See Methods for more details. B Illustration of the tasks
(Linear-1, Linear-2, Nonlinear) performed by participants while in the fMRI scanner.
Points indicate the sampled positions in shape space; dotted lines indicate the
relevant categorization boundaries for each task. Black dots represent the 16
positions in the “main grid”, whichwere sampled on “easy” trials in every task; light
gray dots represent positions sampled on “hard” trials, which differed depending
on the task. In each trial of the task, participants viewed a single shape (1 s), and
used a button press to indicate which category the presented shape fell into. See
Methods for more details on task design. C, D Image similarity analysis: we com-
puted activations from two computer visionmodels, GIST31 and SimCLR32, for each

of the 16main grid shape images.CVisualization of aprincipal components analysis
(PCA) performed on the GISTmodel features, where each plotted point represents
one shape in PC space, colored according to the coordinate value along axis 1 (left)
or axis 2 (right).DQuantificationof the separability of shape categories within each
feature space, based on the ratio of between-category to within-category Euclidean
distance values. E Behavioral accuracy (left) and response time (RT; right) in each
task. Dots in different colors represent individual participants; open circles and
error bars represent the mean ± SEM across 10 participants. F Accuracy (left) and
RT (right) for each task separated into “easy” and “hard” trials, where easy refers to
trials sampling the 16 shapes in the main grid (black dots in B), and hard refers to
trials sampling more challenging portions of the shape space for each task (light
gray dots in B). Gray lines represent individual participants, open circles and error
bars represent the mean ± SEM across 10 participants.
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discriminability of shape representations in visual cortex across each
of the three decision boundaries, within each task context. Overall,
we observed that binary classifier accuracy was highest in early visual
areas V1 and V2, and lower in higher visual areas such as LO2 and
IPS, although participant-averaged classification accuracy was sig-
nificantly above chance for every ROI in every task (significance eval-
uated using a permutation test; FDR corrected; all q<0.01; see
Methods). We also observed that accuracy was highest for the Linear-2
binary classifier (V2 accuracy averaged across tasks: 0.86 ±0.02;
mean± SEM across 10 participants), followed closely by the Linear-1
classifier (V2 accuracy averaged across tasks: 0.80±0.02), with lowest
accuracy for the Nonlinear classifier (V2 accuracy averaged across tasks:
0.72 ±0.02). However, the overall accuracy of these binary classifiers
did not differ significantly across tasks: for each classifier, we performed
a two-way repeated measures ANOVA on the classifier values with fac-
tors of ROI and task, and found significant main effects of ROI, but no
main effects related to task (see Supplementary Table 1 for test
statistics).

Given that there was no difference in overall binary classifier accu-
racy across tasks, we next performed amore targeted analysis, based on
the hypothesis that task-related differences in category discriminability
might be limited to a subset of trials, and therefore would not be mea-
surable when averaging across all trials. Specifically, we predicted
stronger effects for shapes nearer to the category boundary versus
shapes further from the boundary. To test this, we used the same series
of binary classifiers from the previous analysis, but we separated test
trials into two groups based on distance to the boundary: “near” trials
consisted of the 8 main grid shapes that were closest to the classifier
boundary, while “far” trials consisted of the 8 shapes further from the
boundary (Fig. 3, see diagrams on right side). Note that the “near” group
does not include the set of trials that are outside the main grid and
closest to the active boundary in each task (i.e., “hard” trials; light gray
dots in Fig. 1B), but see later sections (Linking neural representations and
behavioral performance) for discussion of this trial group. We then

computed accuracy within each of these trial subsets, using data from
the Linear-1 and Linear-2 tasks only.

As predicted, this analysis revealed a difference between near and
far trials. Classifier accuracywas overall higher for far trials versus near
trials, which was expected based on the difference in stimulus dis-
criminability on these trial types. Importantly, we also observed that
for near trials only, there was an interaction between classifier
boundary and task, such that the accuracy of each classifier appeared
higher when the classifier matched the boundary that was currently
active in the task. This effect was most pronounced in early areas such
as V2. We examined this pattern by performing a three-way repeated
measures ANOVAon the classifier accuracy values for near trials,which
revealed significant main effects of ROI, Task, and Boundary, as well as
a Task × Boundary interaction (ROI: F(7,63) = 65.53, p <0.001; Task:
F(1,9) = 5.37, p =0.044; Boundary: F(1,9) = 9.33, p =0.014; Task ×
Boundary: F(1,9) = 8.99, p =0.011; p-values obtained using permutation
test; see Supplementary Table 2 for complete set of test statistics). We
then examined each classifier boundary separately, which showed that
across all ROIs, the accuracy of the Linear-2 classifier for near trials was
higher when using data from the Linear-2 task versus the Linear-1 task
(two-way repeated measures ANOVA; ROI: F(7,63) = 50.00, p < 0.001;
Task: F(1,9) = 10.30, p =0.010; ROI × Task: F(7,63) = 0.83, p =0.564). At
the single ROI level, this difference was significant in V2 (t(9) = −3.27,
p =0.009; paired t-test with permutation; see Methods), and V3
(t(9) = −2.80, p =0.024). However, when examining the accuracy of the
Linear-1 classifier across tasks, no significant difference was observed
(two-way repeated measures ANOVA; ROI: F(7,63) = 42.38, p < 0.001;
Task: F(1,9) = 0.05, p = 0.822; ROI × Task: F(7,63) = 0.75, p =0.627).
Overall, these results support the idea that on near trials, shape
representations may be modified adaptively to become more
separable across the task-relevant boundary, particularly during the
Linear-2 task. Notably, performing the same test on the classifier
accuracy values from far trials showed no significant interaction
between task and classifier boundary (see Supplementary Table 2),
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suggesting that themodulatory effect of task on visual representations
was limited to trials closer to the decision boundary. The different
pattern of effects between near and far trials was further supported by
a four-way repeated measures ANOVA, which revealed a significant
interaction between Task, Boundary, and Distance (Supplementary
Table 3).

Given that we found higher decoding accuracy and stronger
effects of task in early areas V1 and V2, compared to higher areas like
LO1 and LO2, one possible explanation for theseROI differences is that
early visual areas tended tohavemorevoxels (SupplementaryTable 4).
To control for this possibility, we re-ran the binary classifier analysis
after subsampling ROIs to match the number of voxels across ROIs.

This analysis showed a very similar pattern of results (Supplementary
Fig. 1), suggesting that the observed differences across ROIs were not
due to voxel count differences.

To evaluate whether a similar interaction between task, boundary
and distance was present for the Nonlinear boundary, we performed a
similar analysis for the Nonlinear binary classifier (Fig. 4). Specifically,
we computed Nonlinear classifier accuracy, separately for trials that
were near versus far from the Nonlinear decision boundary. In this
case, however, we did not observe any consistent differences in clas-
sifier accuracy across tasks, for either near trials (two-way repeated
measures ANOVA; ROI: F(7,63) = 45.99, p <0.001; Task: F(2,18) = 0.19,
p =0.829; ROI × Task: F(14,126) = 0.77, p =0.696), or far trials (two-way
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repeated measures ANOVA; ROI: F(7,63) = 59.44, p < 0.001; Task:
F(2,18) = 1.01, p =0.380; ROI × Task: F(14,126) = 0.66, p = 0.804).

Multinomial classification of shape representations
Next, we investigated visual cortex representations at a finer level of
granularity, by training a 16-way multinomial classifier (Fig. 2D). In
contrast to the binary classifier analysis, which reduces all stimuli to
two discrete categories, this multinomial classifier treats each of the
individual shapes as a distinct category, and therefore may be able to
pick up on more fine-grained changes to the overall representational
space that occur across tasks. As before, we trained and tested this
classifier using data from each task separately. We observed that
overall 16-way classification accuracy was highest in V2 (16-way
accuracy averaged across tasks: 0.34 ± 0.04; mean ± SEM across 10
participants), followed by V1 (0.32 ± 0.05) and V3 (0.27 ± 0.03).
Participant-averaged classification accuracy was significantly above
chance for every ROI in every task (significance evaluated using a
permutation test; FDR corrected; all q < 0.01; see Methods).

To characterize the neural shape space, we used the output of the
16-way classifier to compute a confusion matrix for each ROI and for
each task, which captures how often the classifier assigned each shape
label to each shape in the test dataset (Fig. 5; seeMethods). For V1, this
confusion matrix revealed that shape confusability was related to
distance in shape space, with the classifier tending to make more
errors between shapes that were adjacent in shape space (off-diagonal
structure in Fig. 5A). This relationshipwith distance can also be seen by
plotting the proportion of predictions as a function of the distance
between predicted and actual shape space coordinates (Fig. 5B).
Importantly, the distances between shape space points were not spe-
cified in the construction of the classifier, where all 16 points were
treated as independent categories. Thus, the emergence of this
structure in the classifier confusionmatrixprovides evidence for a two-
dimensional representation of the shape space grid in V1. A similar
pattern was seen in all other ROIs tested.

Next, we examined how well the neural shape space measured in
each task aligned with each decision rule. To examine this, we first
constructed “template” confusionmatrices for the Linear-1 and Linear-
2 boundaries, where each template had 1 for shape pairs that were on
the same side of the category boundary for that task and 0 for shape
pairs that were on different sides (Fig. 5C). We then correlated these
template matrices with the real confusion matrices for each task
(Fig. 5D). This analysis revealed that the similarity of confusion matri-
ces to each template differed depending on task. A three-way repeated
measures ANOVA on the z-transformed template similarity values
showed main effects of ROI and Template, as well as a significant
ROI × Template interaction and a significant Task × Template interac-
tion (ROI: F(7,63) = 46.42, p < 0.001; Task: F(1,9) = 8.06, p = 0.020; Tem-
plate: F(1,9) = 21.05, p =0.001; ROI × Task: F(7,63) = 1.41, p =0.217;
ROI × Template: F(7,63) = 3.25, p = 0.004; Task × Template: F(1,9) = 8.89,
p =0.015; ROI × Task × Template: F(7,63) = 0.97, p =0.461; p-values
obtained using permutation test; see Methods). Evaluating the simi-
larity values for each template separately, we found that across all
ROIs, the Linear-2 template was significantlymore similar to confusion
matrices computed from the Linear-2 task versus the Linear-1 task
(two-way repeated measures ANOVA; ROI: F(7,63) = 31.99, p < 0.001;
Task: F(1,9) = 15.62, p = 0.003; ROI × Task: F(7,63) = 0.97, p =0.467). Post-
hoc tests showed that the difference in similarity to the Linear-2 tem-
plate between the Linear-2 and Linear-1 tasks was significant in LO1
(t(9) = −2.93, p = 0.007; paired t-test with permutation; see Methods).
These findings suggest that shape representations in LO1 were more
aligned with the Linear-2 template when the Linear-2 boundary was
relevant than when it was irrelevant for the present task. However, the
similarity of confusion matrices to the Linear-1 template did not differ
significantly across tasks (two-way repeated measures ANOVA; ROI:
F(7,63) = 32.57, p < 0.001; Task: F(1,9) = 0.49, p = 0.502; ROI × Task:

F(7,63) = 1.53, p =0.175). Additionally, when we constructed a template
for the Nonlinear task, we did not observe a difference in the similarity
of confusion matrices to the Nonlinear template across tasks (Sup-
plementary Fig. 2). Together, these results suggest that shape repre-
sentations in visual cortex during our taskmay reorganize in away that
reflects the current decision boundary and shifting cognitive demands.

As in the binary classifier analysis, we then asked whether these
representational changes were more pronounced for shapes nearer to
the category boundary than shapes further from the boundary. We
again divided the trials into near and far groups based on distance to
the boundary. To measure the category separability of shapes in each
of these distance bins, we computed a continuousmeasure we refer to
as classifier confidence (Fig. 6). Confidence is a single-trial measure,
computed with respect to each of the category boundaries separately,
and was computed by taking the output of the 16-way classifier
described above and comparing the total probability assigned by the
classifier to points on each side of each boundary. Larger positive
values indicate higher separability of shapes across the boundary of
interest.We refer to thesemeasures, with respect to eachboundary, as
Linear-1 confidence, Linear-2 confidence, and Nonlinear confidence.

We then compared Linear-1 confidence and Linear-2 confidence
across the Linear-1 and Linear-2 tasks (Fig. 7). Overall, both types of
confidencewere highest for trials furthest from the boundary (Fig. 7A),
followed by near trials (Fig. 7B). This pattern is expected given that
shapes further from the boundary are more distinctive from one
another, while shapes nearer to the boundary are more ambiguous. In
addition, this analysis revealed effects of task condition that differed
for near and far trials. For trials in the far group, a three-way repeated
measures ANOVA showed main effects of ROI and confidence
boundary (i.e., Linear-1 confidence versus Linear-2 confidence), but no
main effect of task or interaction between task and boundary (Sup-
plementary Table 5), suggesting that discriminability of shapes across
the Linear-1 and Linear-2 boundaries did not differ across tasks for this
group of trials. For the near trials, however, there was also a significant
interaction between task and boundary (Supplementary Table 5).
When each boundary was examined separately for each of these trial
groups, we found a main effect of task on Linear-2 confidence for the
near trials (two-way repeated measures ANOVA on near trials; ROI:
F(7,63) = 30.05, p <0.001; Task: F(1,9) = 13.65, p =0.005; ROI × Task:
F(7,63) = 0.36, p =0.925), with Linear-2 confidence showing higher
values for the Linear-2 task, across all ROIs, than the Linear-1 task. As
with the previous analyses, the effect of taskwas larger for the Linear-2
boundary than for the Linear-1 boundary—there was no main effect of
task seen for the Linear-1 confidence values for near trials (ROI:
F(7,63) = 23.58, p < 0.001; Task: F(1,9) = 0.10, p = 0.757; ROI × Task:
F(7,63) = 0.62, p = 0.751). As a further test, we also performed a version
of this classifier confidence analysis using the output of the simpler
binary classifiers presented earlier (Supplementary Fig. 3). This
revealed the same pattern of results, namely an interaction between
the classifier boundary and the task, in which Linear-2 confidence
values were significantly higher when computed from the Linear-2 task
versus the Linear-1 task. This indicates that the difference in classifier
confidence across tasks is not dependent on the classifier training
method used.

In addition to comparing confidence across the two linear
boundaries, we measured Nonlinear confidence for the far and near
trials in each task (Supplementary Fig. 4). As before, confidence values
tracked the distance of shapes from the boundary, with highest overall
confidenceobserved for far trials. In contrast to the results with Linear-
2 confidence, however, Nonlinear confidence did not show any sig-
nificant differences across tasks.

Linking neural representations and behavioral performance
Finally, we evaluated whether the discriminability of shape repre-
sentations across the relevant category boundary in each task was
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associated with behavioral performance. To test this, we compared
classifier confidence for correct versus incorrect trials: focusing here
on only the “hard” trials (see light gray points in Fig. 1B), because these
had the highest rate of incorrect responses. To ensure a fair compar-
ison across correct and incorrect trials, we used bootstrap resampling
to match the distribution of stimulus positions sampled in each group
of trials; see Methods for details. As shown in Fig. 8, this analysis

revealed a significant difference in classifier confidence between cor-
rect and incorrect trials in both the Linear-2 and the Nonlinear tasks,
with confidence tending to be higher for correct trials than incorrect
trials, particularly in early areas V1, V2, and V3. A two-way repeated
measures ANOVA with factors of ROI and correctness revealed a sig-
nificant main effect of correctness for both the Linear-2 and Nonlinear
tasks, and a significant interaction between ROI × correctness for the
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Fig. 5 | Classifier confusion matrices suggest restructuring of shape repre-
sentations between the Linear-1 and Linear-2 tasks. A Classifier confusion
matrices for V1 in each task, where each row represents the set of trials on which a
given shapewas actually shown, and the columns represent theproportion of those
trials that the classifier predicted as having each of the 16 shape labels (each row
sums to 1). Confusion matrices were computed using main grid trials only, and are
averaged across 10 participants. B A simplified view of the classifier confusion data
for V1: we computed the proportion of trials on which the actual and predicted
shapeswere separated by a givendistance in shape space. Colored lines and shaded
error bars indicate mean ± SEM across 10 participants. C Template matrices for the
Linear-1 and Linear-2 tasks, representing the pattern of confusability expected for a

perfect binary representationofeachdecisionboundary. In (A andC) the axis labels
are coordinate pairs which represent the position of stimuli in shape space: (axis 1
coordinate, axis 2 coordinate). These are analogous to the x and y coordinates in
Fig. 1B. The Linear-1 template distinguishes stimuli based on their axis 1 coordinate
(x), while the Linear-2 template distinguishes stimuli based on their axis 2 coordi-
nate (y). D The similarity (Pearson correlation coefficient, z-transformed) between
actual and template confusion matrices for each task and each ROI. Gray dots
represent individual participants, colored circles and error bars represent the
mean ± SEM across 10 participants. See Supplementary Fig. 2 for an analogous
analysis using a template for the Nonlinear task.
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Nonlinear task (Linear-2; ROI: F(7,63) = 10.21, p <0.001; Correctness:
F(1,9) = 6.33, p = 0.031; ROI × Correctness: F(7,63) = 1.81, p = 0.099; Non-
linear; ROI: F(7,63) = 7.55, p <0.001; Correctness: F(1,9) = 8.68, p = 0.016;
ROI ×Correctness: F(7,63) = 2.82, p = 0.011; p-values obtained using
permutation test; seeMethods). At the individual ROI level, confidence
was significantly higher for correct versus incorrect trials in V1 during
both the Linear-2 and the Nonlinear tasks (Linear-2; t(9) = 3.62,
p =0.007; Nonlinear; t(9) = 3.39, p =0.008; paired t-test with permuta-
tion; see Methods), and in V2 during the Linear-2 task (t(9) = 2.91,
p =0.022). The Linear-1 task showed no significant differences in
confidence for correct versus incorrect trials (ROI: F(7,63) = 4.90,
p <0.001; Correctness: F(1,9) = 0.40, p = 0.543; ROI × Correctness:
F(7,63) = 0.98, p = 0.453). These results indicate that the separability of
shape representations in early visual cortex across the task-relevant
category boundary was associated with behavioral performance, at
least for two out of three categorization tasks.

Discussion
Our goal was to determine whether and how human visual cortex
representations of shape stimuli are adaptively modulated when
switching between distinct task contexts. To test this, we trained
participants to perform a categorization task on shape silhouette sti-
muli within a two-dimensional shape space (Fig. 1). Participants cate-
gorized shapes according to different categorization rules (Linear-1,
Linear-2, Nonlinear) on interleaved fMRI scanning runs, and we used
multivariate decoding to explore how neural representations shift
based on decision rules and the relative positions of shapes within the
two-dimensional stimulus space. We showed that the discriminability
of shapes across each linear boundary, as measured by classifier
accuracy and classifier confidence,was higherwhen that boundarywas
relevant to the current task. These effects were most pronounced in
early areas V1–V3, andwere strongest for shapes located nearest to the
active categorization boundary (Figs. 3 and 7). We also used a confu-
sion matrix analysis to show that shape representations becamemore
alignedwith the Linear-2 boundarywhen participantswereperforming
the Linear-2 task versus the Linear-1 task, with the largest effect
observed in LO1 (Fig. 5). Finally, we showed that the discriminability of
shapes across relevant category boundaries was higher on correct

versus incorrect trials, indicating a link with behavioral task perfor-
mance (Fig. 8). Together, these results demonstrate that performance
of a categorization task with a dynamically changing task boundary is
accompanied by changes to neural representations in human visual
cortex.

The average accuracy of our classifiers, across tasks, was highest
in V2 followed by V1 and V3. This high decoding accuracy in early areas
is surprising in light of earlier work suggesting that higher visual areas
like ITC and LOC encode shapes similar to ours (i.e., radial frequency
components (RFC)-defined silhouettes) in a way that matches per-
ceptual similarity29,33, and that LOC is critically involved in shape
computations34. Work in non-human primates also indicates that
neurons in ITC, as well as in V4, aremore strongly tuned for shape and
contour than neurons in V113,35–38. One reason for our observation of
higher decoding accuracy in early areas is that our stimuli were sil-
houettes presented at a fixed size and position, so invariance to size or
position was not required to encode them accurately. As a result, fine-
grained retinotopic and orientation tuning in areas like V1–V3 was
likely sufficient to encode the shapes with high accuracy, without the
need for an explicit—or invariant—contour or shape representation.
Importantly, the goal of our experiment was not to measure abstract
representations of shape or contour per se but to measure how visual
representations change in accordance with dynamically varying deci-
sion boundaries, and our relatively simple stimulus set was appro-
priate for this goal.

The effects of task context on classifier accuracy and classifier
confidence (Figs. 3 and 7), aswell as association of classifier confidence
with behavioral performance (Fig. 8), also tended to be strongest in
early visual areas. This advantage for early areas may be due in part to
the higher signal-to-noise ratio (SNR) of decoding accuracy in V1–V3,
but it may also suggest that representations in these areas are parti-
cularly important for performanceof our decision task. The findings of
strong task-dependent effects in early retinotopic areas align with
recent rodent studies, which show that representations within sensory
areas contain information pertinent to task goals, motor outcomes,
and prior knowledge about sensory environments23–25,39,40. Extending
these findings, our study demonstrates that human visual areas
are more actively involved with decision-related computation than
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Fig. 6 | Illustration of how classifier “confidence” was computed with respect
to each binary decision boundary. A Linear-1 confidence, or confidence with
respect to the Linear-1 category boundary, was computed based on the difference
between the total probability assigned by the 16-way classifier to each side of the
boundary (seeMethods). Left and right panels represent data fromV1 in the Linear-
1 and Linear-2 tasks, respectively, averaged across all participants. In each of the

plots, each square represents a bin of shape spacepositions in the test dataset, and
the color indicates the average confidenceassigned to the correct category for that
test trial (red) versus the incorrect category (blue). Arrows labeled “easy” and
“hard” indicate the trial types, as in Fig. 1B; the “hard” trial group was only used to
generate Fig. 8. B Same as (A), but showing Linear-2 confidence. An analogous
procedure was also used to compute Nonlinear confidence; seeMethods.
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previously thought. Our results demonstrate that human sensory
areas not only code for temporally varying task contexts but also
dynamically integrate this information with incoming sensory inputs
to optimize decision processes. This observation challenges the
traditional view that sensory areas are primarily dedicated to basic
sensory processing, suggesting a more multifaceted role in cognitive
computation.

A plausible mechanism for guiding dynamic task coding and
context-dependent representation of sensory inputs in humans may
involve the deployment of selective attention. By flexibly prioritizing
processing of relevant stimulus features based on current task goals,
attention may guide the integration of sensory information with
shifting task demands. Specifically, our observed task-dependent
effects in early retinotopic areas are consistent with the literature on
feature-based attention, which has shown that directing attention to
simple visual features can modulate representations in early visual
cortex41–53. By modulating neurons coding for perceptual features that
differentiate between categories, feature-based attention could pro-
vide a mechanism for improving the separability of different stimulus
categories54–56. Our result of early modulations is also consistent with
Ester et al.19, who found biases in orientation representations that
were related to categorization, although their paradigm used a single
category boundary as opposed to a dynamically updated boundary.

Importantly, however, our experiment differs from typical para-
digms for studying feature-based attention6,47,49,51,52 in that participants
were not cued explicitly to a single elementary feature dimension
(such as orientation ormotion direction), and insteadwere required to

categorize stimuli along axes in an abstract shape space. Within the
shape space, simple features like a single orientation or retinotopic
position are not sufficient to determine the category of a shape, so
information must be integrated over multiple areas of the image and
multiple low-level feature dimensions in order to solve the task. In this
light, onehypothesis for our observed results is thatduring each task, a
subset of the neurons within early visual cortex are tuned for feature
combinations that are diagnostic of the relevant category distinction.
These subpopulationsmay be tuned for specific retinotopic regions of
the image, features like orientation or curvature, or combinations of
these properties. Top-down modulations may then selectively target
these particular subpopulations, leading to an increase in shape dis-
criminability at the population level. In this respect, our results go
beyond existing knowledge on selective attention, by showing that a
mechanism similar to feature-based attention, perhaps combined with
spatial attention, may operate in visual cortex within the context of a
more complex, abstract decision-making task.

Relatedly, other work using more complex stimuli such as three
dimensional objects and human bodies has also shown feature-based
attention effects in higher visual areas such as LOC and the extrastriate
body area, as opposed to early visual cortex28,57. As discussed earlier,
the fact that we saw larger effects in early visual areas versus
higher areas may be due to the fact that our task did not require
position-invariant representations of shape or contour. Interestingly,
Jackson et al.28 also examined early visual areas in their study of three-
dimensional object coding, and found that while LOC encoded more
information about a task-relevant objectdimension, no such effectwas
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Fig. 7 | Discriminability of Linear-1 and Linear-2 shape categories depends on
task and proximity to category boundaries. To obtain a continuous estimate of
shape category discriminability, we used our 16-way multinomial classifier (see
Fig. 2D) to compute classifier confidence toward the correct binary category on
each trial (see Fig. 6). Confidence was computed with respect to the Linear-1
categorization boundary (Linear-1 confidence; left) or the Linear-2 categorization
boundary (Linear-2 confidence; right). A Confidence computed using “far” trials,

meaning the 8 points in themain grid that fell furthest from the category boundary
of interest. B Confidence computed using “near” trials, meaning the 8 points in the
main grid that fell nearest to the boundary of interest. In (A, B), the gray dots
represent individual participants, colored circles and error bars represent the
mean ± SEM across 10 participants. For an analogous version of this analysis based
on a binary classifier, see Supplementary Fig. 3.
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found in early visual areas. One possible explanation for this is that our
stimuli subtended a large portion of the visual field, with the most
category-diagnostic features distributed across a range of retinotopic
positions, while in the stimuli used by Jackson et al., the task-relevant
stimulus features were localized to a small region of the image. This
difference in spatial distribution, and possibly the allocation of spatial
attention, may explain why we observed task-related modulations in
early retinotopic cortex while Jackson et al. did not. More generally,
these observationsmay indicate that attentionalmodulations in V1–V3
are most important for task performance when stimuli are relatively
simple and require fine-grained spatial detail (e.g., oriented gratings,
two-dimensional silhouettes in our task), than when stimuli are more
complex and require position invariance. In keeping with this idea of
attention adapting dynamically to the most informative features for a
task, a recent behavioral study demonstrated that feature-based
attention is adaptively allocated according to experience with the
variance of feature distributions58. Our findings extend these prior
studies by demonstrating feature-based attention as a potential
mechanism for effectively integrating sensory information with chan-
ging task requirements within human sensory cortex.

Despite the relatively low classifier accuracy values that were
observed in higher areas, we did observe a significant effect of task-
relevance in LO1 based on the confusionmatrix analysis in Fig. 5. In this
analysis, we demonstrated that classifier confusion matrices from LO1
were more aligned with the Linear-2 task template during the Linear-2
task versus the Linear-1 task. The divergence of this finding from our
classifier accuracy and confidence analyses, in which early areas
showed larger task effects than LO1, may indicate that the nature of
representational changes in LO1 across categorization tasks differs
from the changes in V1–V3. Specifically, the confusion matrix analysis
tests the hypothesis that shape representations in each task become
more aligned with a binary, categorical code, and tests this hypothesis
using all trials together. The classifier accuracy and confidence ana-
lyses, on the other hand, test for an increase in category discrimin-
ability specifically for trials that are near the boundary. In this light, one
interpretation is that context-related changes in early areas reflect

subtle changes in discriminability that are limited to the area near the
categoryboundary. These subtle changes allow the overall structure of
the representational space to be largely maintained across tasks in a
stable sensory code. On the other hand, changes in LO1 may reflect a
more dramatic restructuring of sensory codes into a format that
resembles a binary or categorical code for each task. Such a difference
would be consistent with LO1 being a higher visual area more closely
alignedwith decision processes than early areas. In addition to this, the
confusion matrix analysis captures changes to the relationship
between all 16 shapes in the main shape space grid, including pairs on
the same side of the boundary, while the classifier accuracy and con-
fidence analyses only capture the discriminability of shapes across the
category boundary. Based on this, another (non-exclusive) hypothesis
is that the changes in LO1 from the Linear-1 task to the Linear-2 task are
primarily driven by restructuring of shape representations within a
given category (i.e., “acquired equivalence”8) asopposed to an increase
in discriminability across the boundary. Further experiments will be
needed to evaluate these possibilities.

When classifier accuracy and confidence values were broken
down based on proximity to the category boundary, we observed
the largest effects of categorization task on confidence for stimuli
nearest the boundary, and no effect of task for the furthest stimulus
positions. This scaling of categorization effects with proximity to the
boundary is consistent with a previous fMRI experiment19 as well as
past behavioral experiments4,8–10,59. These convergent findings suggest
that top-down modulatory effects in early visual cortex are strength-
ened on trials with higher category ambiguity, facilitating perceptual
discrimination of these challenging stimuli. Importantly, our results
also build on these past findings by demonstrating an increase in the
discriminability of representations near the decision boundary during
a task that requires flexible switching between multiple decision
boundaries.

Task context had more consistent effects on discriminability with
respect to the Linear tasks compared to the Nonlinear task, with no
significant difference across tasks observed for Nonlinear classifier
accuracy (Fig. 4). This difference may be due to the fact that the
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Fig. 8 | Task-relevant shape categories are more discriminable on correct ver-
sus incorrect trials. In each task, classifier confidence was computed with respect
to the relevant category boundary for that task. Confidence was computed using
“hard” trials only (those not on the main grid, and nearest the relevant boundary),
separately for trials with correct and incorrect behavioral responses. The set of

shape space positions sampled on correct and incorrect trials was matched using
resampling to ensure that the effect was not driven by stimulus differences; see
Methods for details. Gray dots represent individual participants, colored circles and
error bars represent the mean ± SEM across 10 participants.
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Nonlinear task required using a non-linear decision boundary. The
non-linear boundary was more challenging behaviorally, as demon-
strated by the slower RTs and lower accuracy observed in the
Nonlinear task compared to the Linear-1 and Linear-2 tasks, which is
also consistent with a past report showing that a quadrant task with
similar stimuli was more challenging for macaques to learn than a
linear rule29. Notably, our image similarity analysis (Fig. 1D) suggested
an even more dramatic difference in difficulty between the Nonlinear
task and the Linear tasks, compared to the modest difference seen
behaviorally. This may suggest that human observers used a more
complex strategy to solve the Nonlinear task, allowing them to do
relatively well on the Nonlinear task despite the low separability of the
Nonlinear categories in image space. For example, theymight havefirst
identified the quadrant each shape belonged to, then mapped this
quadrant to a category label using an abstract rule.

In terms of our classifier results, the non-linearity of the
boundary may also explain the lack of a consistent task-related
modulation of Nonlinear discriminability in visual cortex. It is pos-
sible that while top-down mechanisms are capable of selectively
enhancing representations along one continuous axis in a percep-
tual space, such a mechanism does not exist for non-linear bound-
aries. Interestingly, although we did not observe a task-related
modulation of Nonlinear confidence, we observed a significant
within-task association of Nonlinear confidence with behavioral
performance (Fig. 8). One explanation for this difference is that a
different set of trials is used for each analysis—the association of
confidence with behavioral performance was computed using hard
trials only, while the task-related effect was assessed using easy
trials only. We did not examine task-related effects on classifier
confidence for hard trials here, due to the fact that hard trials
sampled different portions of the stimulus space in each task (this
was an intended property of the experimental design; see Fig. 1B),
which made it challenging to obtain fair, stable comparisons of
confidence across tasks for these trials. However, it is possible that
if sufficient trials had been collected for positions closer to the
Nonlinear boundary in each task, a task-related enhancement of
Nonlinear category coding may have been measurable. At the same
time, the difference in outcomes between these analyses may also
indicate that while discriminability of shapes across the Nonlinear
boundary does not differ across task contexts, there is variability in
the quality of representations across trials within theNonlinear task,
and this variability is associated with behavioral performance.

Comparing the two Linear tasks, we observed higher SNR for
discriminating stimuli across the Linear-2 boundary than the Linear-1
boundary (i.e., higher average accuracy of binary classifier across the
Linear-2 boundary, and higher values of similarity to Linear-2 template,
across all tasks). We also observed more consistent effects of task
relevance on Linear-2 accuracy, template similarity, and confidence
than the analogous measures with respect to Linear-1. Finally, we did
not observe any association of Linear-1 confidence with behavioral
performance, though such an effect was observed for Linear-2 and
Nonlinear confidence. These findings may be related to the difference
in perceptual separability, as measured by our image similarity ana-
lyses, between the Linear-1 and Linear-2 categories (Fig. 1D). The Linear-
2 boundary, across which shapes are more perceptually distinctive,
may also be a more effective target of context-dependent processing
via selective attention mechanisms. At the same time, however, we
note that several of our analyses also revealed a significant interaction
between task and classifier boundary (Figs. 3B, 5D, and 7B), which
indicates that there is not simply an increase in SNR from the Linear-1
to Linear-2 task that drives the observed effects, but a specific, task-
dependent enhancement of Linear-2 category separability during the
Linear-2 task. Taken together, these findings may indicate an asym-
metry in the allocation of attention to different dimensions within our
shape space, in a way that reflects physical properties of the stimuli.

Overall, our findings provide evidence for context-dependent
modulations of neural representations in early visual cortex, and show
that these effects differ in accordance with temporally shifting task
demands. Shape representations were modified to support dis-
crimination of currently-relevant shape categories, with effects that
were strongest for stimuli near the decision boundary. Moreover,
these effects were associated with task performance. These results
may indicate that visual cortex plays an active computational role in
the flexible categorization of stimuli, providing new insight into how
we organize knowledge about visual stimuli in the face of changing
behavioral requirements.

Methods
Human participants
Ten (10) participants were recruited from the UCSD community, and
were adults having normal or corrected-to-normal vision. Participants
were between the ages of 24 and 33 (mean= 28.2, std = 3.0), and 7 out
of 10 were female. The gender/sex of participants was evaluated using
self-report. All datawere aggregated across gender/sex groups.Wedid
not perform any analyses related to gender/sex differences across
participants, as this was not relevant to our research questions. The
protocol for this studywas approved by the Institutional ReviewBoard
at UCSD, and all participants provided written informed consent. As
part of this experiment, each participant took part in one behavioral
training session lasting approximately 1 h, for which they were com-
pensated at a rate of $10/h and three scanning sessions each lasting
approximately 2 h, forwhich theywere compensated at a rate of $20/h.
During each scanning session for this experiment, participants also
performed several runs of a n-back (repeat detection) task on the same
stimuli used in ourmain task (seeMain task design). Data from this task
are not analyzed here but are included in our full open dataset (see
Data availability). Each participant also participated in a separate
retinotopic mapping scan session; for eight participants this retino-
topic mapping session was performed as part of an earlier experiment
and for the remaining two itwas performed just prior to the start of the
present experiment.

Acquisition of MRI data
All magnetic resonance imaging (MRI) scanning was performed at the
UCSanDiegoKeckCenter for fMRI. For thefirst 7 participants,weused
a General Electric (GE) Discovery MR750 3.0T scanner, and for the
latter 3 participants, we used a Siemens MAGNETOM Prisma 3.0 T
scanner. Given that all manipulations were within-participant, we
combined data across scanners.

We first discuss the protocols that were used for the GE scans:
We used a Nova Medical 32-channel head coil (NMSC075-32-3GE-
MR750) to acquire all functional echo-planar imaging (EPI) data,
using the Stanford Simultaneous Multislice (SMS) EPI sequence
(MUX EPI), with a multiband factor of 8 and 9 axial slices per band
(total slices = 72; 2mm3 isotropic; 0mm gap; matrix = 104 × 104;
field of view = 20.8 cm; repetition time/time to echo [TR/TE] = 800/
35ms; flip angle = 52°; inplane acceleration = 1). To perform image
reconstruction and un-aliasing we used reconstruction code from
the Stanford Center for Neural Imaging, on servers hosted by
Amazon Web Services. The initial 16 TRs collected at sequence
onset were used as reference images in order to transform data
from k-space to image space.

For the Siemens scans: We used a Siemens 32-channel head coil
(Siemens Medical Solutions, Malvern, PA) to acquire all functional EPI
data. Functional runs used a multiband acceleration factor of 4 (sli-
ces = 68; 2.5mm3 isotropic; 0mm gap; matrix = 100 × 100; field of
view = 25.0 cm; repetition time/time to echo [TR/TE] = 1300/32.60ms;
flip angle = 50°; phase-encoding direction A > > P).

In addition, for both types of scanners, a set of two “topup”
datasets (17 s each) were collected using forward and reverse phase-
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encoding directions. For the GE scans, we collected one set of topups
at the halfway point of the session, and for the Siemens scans, we
collected 2–3 sets of topups that were evenly distributed through the
session. These runs were used to correct for distortions in the EPI
sequences from the same session using topup functionality60 in the
FMRIB Software Library (FSL61).

In addition to the functional data, we also collected a high-
resolution anatomical scan for each participant as part of that parti-
cipant’s retinotopic mapping session. This anatomical T1 image was
used for segmentation, flattening, and delineation of the retinotopic
mapping data. For five out of the ten participants, we acquired this
anatomical scan using the same 32-channel head coil used for func-
tional scanning, and for the remaining five participants, we used an
in vivo eight-channel head coil. Anatomical scans were acquired using
accelerated parallel imaging (GE ASSET on a FSPGR T1-weighted
sequence; 1 × 1 × 1mm3; 8136ms TR; 3172ms TE; 8° flip angle; 172 sli-
ces; 1mm slice gap; 256 × 192 cm matrix size). When the 32-channel
head coil was used, anatomical scans were corrected for inhomo-
geneities in signal intensity using GE’s ‘phased array uniformity
enhancement’ (PURE) method.

Preprocessing of functional MRI data
Preprocessing of functional data was performed using tools from FSL
and FreeSurfer (available at http://www.fmrib.ox.ac.uk/fsl and https://
surfer.nmr.mgh.harvard.edu). We first performed cortical surface
gray-whitematter volumetric segmentation of the anatomical T1 scans
for each participant, using the recon-all function in FreeSurfer62. The
segmented T1 data were then used to define cortical meshes on which
wedefined retinotopic ROIs (see next section for details).We also used
the anatomical T1 data in order to alignmulti-session functional data to
a common space for eachparticipant. This was performedby using the
first volume of the first scan for each session as a template, and using
this template to align the entire functional session to the anatomical
scan for each participant. We used the manual and automatic
boundary-based registration tools in FreeSurfer to perform co-
registration between functional and anatomical data63, then used the
resulting transformation matrix and FSL FLIRT to transform all func-
tional data into a common space64,65. Next, we used FSL MCFLIRT to
perform motion correction64, with no spatial smoothing, with a final
sinc interpolation stage, and 12° of freedom. Finally, we performed de-
trending to remove slow drifts in the data using a high-pass filter (1/
40Hz cutoff).

Following these initial preprocessing stages, we z-scored the data
within each scan run on a per-voxel basis to correct for differences in
mean and variance across runs. This and all subsequent analyses were
performed using Python 3.7.10 (Python Software Foundation, Wil-
mington, DE). Next, we obtained a single estimate for each voxel’s
activation on each trial by averaging the time series over a window
spanning from 3.2 to 5.6 s (4–7 TRs) following image onset (for parti-
cipants S01–S07, who were scanned with a 0.8 s TR), or from 2.6 to
6.5 s (2–5 TRs) following image onset (for participants S08–S10, who
were scanned with a 1.3 s TR). SeeMain task design for more details on
task timing and procedure. We then extracted data from voxels within
several regions of interest (ROIs; see next section) that were used for
subsequent analyses.

Retinotopic ROI definitions
We defined several retinotopic visual ROIs: V1, V2, V3, V3AB, hV4, LO1,
LO2, and IPS, following previously identified retinotopic mapping
procedures66–72. We combined all intraparietal sulcus (IPS) subregions
(IPS0, IPS1, IPS2, IPS3), into a single combined IPS ROI, as this led to
improved classifier accuracy relative to the individual sub-regions. For
8 out of 10 participants (all except S08 and S09), retinotopic mapping
stimuli consisted of black-and-white contrast reversing checkerboard
stimuli that were configured as a rotatingwedge (10 cycles, 36 s/cycle),

expanding ring (10 cycles, 32 s/cycle), or bowtie shape (8 cycles, 40 s/
cycle). During the rotating wedge task, a contrast detection task
(detecting dimming events approximately every 7.5 s) was used to
encourage covert attention to the stimulus. Average accuracy on this
task was 76.75 ± 4.01% (mean ± SEM across 8 participants). The stimu-
lus had amaximum eccentricity of 9.3°. For the remaining participants
(S08 and S09), retinotopic mapping stimuli were bars composed of
randomly generated moving dots, which participants covertly atten-
ded to while performing a motion discrimination task (see ref. 68 for
details).

After defining retinotopic ROIs using these methods, we further
thresholded the ROIs using an independent localizer task to identify
voxels that were responsive to the region of space in which shape
stimuli could appear (see Silhouette localizer task for details on
this task). The data from the localizer were analyzed using a general
linear model implemented in FSL’s FMRI Expert Analysis Tool (version
6.00). This analysis included performing brain extraction and pre-
whitening73,74. We generated predicted BOLD responses by convolving
each stimulus onset with a canonical gamma hemodynamic response
(phase = 0 s, s.d. = 3 s, lag = 6 s), and combined individual runs using a
standardweightedfixedeffects analysis.We identified voxels thatwere
significantly activated by the stimulus versus baseline (p <0.05, false
discovery rate (FDR) corrected). This mask of responsive voxels was
then intersected with each ROI definition to obtain the final thre-
sholded ROI definitions. The exception to this was the IPS ROIs, to
which we did not apply any additional thresholding; this was because
the localizer yielded few responsive voxels in IPS for someparticipants.
See Supplementary Table 4 for the final number of voxels in each ROI,
after thresholding.

Shape stimuli
We used a set of shape silhouette stimuli that varied parametrically
along two continuous dimensions, generating a 2-dimensional shape
space (Fig. 1A). Each shape in this space was a closed contour com-
posed of RFCs29,30. Each shape was composed of 7 different RFCs,
where each component has a frequency, amplitude, and phase. We
selected these stimuli because they can be represented in a low-
dimensional grid-like coordinate system, but are more complex and
abstract relative to simpler stimuli such as oriented gratings. Impor-
tantly, the changes along each axis in the shape space involve varia-
bility in multiple regions of the image, so categorizing the shapes
correctly required participants to integrate information globally
across the image, rather than focusingon a singlepart of the shape. For
example, to categorize the shapes along axis 1 (Fig. 1A), it might be
necessary to integrate information about both the size of the top left
lobe, and the shape of the protrusion on the right side. Thus, it would
not be possible to categorize the shapes by attending to one focal
spatial location only.

To generate the 2-dimensional shape space, we parametrically
varied the amplitude of two RFCs, leaving the others constant. The
manipulation of RFC amplitude was used to define an x/y grid in
arbitrary units that spanned positions between 0 and 5 arb. units, with
adjacent grid positions spaced by 0.1 arb. units. All shape space posi-
tions on all trials were sampled from this grid of shape space positions.
We also defined a coarser gridof 16 points (a4 × 4grid)whichwas used
to generate the 16 stimuli thatwere shownon themajority of trials; this
grid is referred to as the “main grid”, and included all x/y combinations
of the points [0.1, 1.7, 3.3, 4.9] in shape space coordinates. Stimuli
corresponding to points in shape space that were not part of the main
grid were used to make the tasks more difficult, see Main task design
for details.

We divided the shape space into four quadrants by imposing
boundaries at the center position of the grid (2.5 arb. units) in each
dimension. To define the binary categories that were relevant for
each task (see Main task design), we grouped together two quadrants
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at a time, with the Linear-1 task and Linear-2 tasks grouping quadrants
that were adjacent (creating either a vertical or horizontal linear
boundary in shape space), and the Nonlinear task grouping quadrants
that were non-adjacent (creating a non-linear boundary). During task
training as well as before each scanning run, we utilized a “prototype”
image for each shape space quadrant as a way of reminding partici-
pants of the current categorization rule. The prototype for each
quadrant was positioned directly in the middle of the four main
grid positions corresponding to that quadrant (i.e., the x/y coordinates
for the prototypes were combinations of [0.9, 4.1] arb. units). These
prototype images were never shown during the categorization task
trials, to prevent participants from simplymemorizing the prototypes.
Shapes used in the task were also never positioned exactly on
any quadrant boundary in order to prevent any ambiguity about
category.

Display parameters
During all scanning runs, stimuli were presented to participants
by projecting onto a screen that was mounted on the inside of the
scanner bore, just above the participant’s chest. The screen was visible
to the participant via a mirror that was attached to the head coil. The
image projected onto the screen was a rectangle with maximum hor-
izontal eccentricity of 13° (center-to-edge distance) and maximum
vertical eccentricity of 10°. In the main task and silhouette localizer
task, the region of the screen in which shapes could appear subtended
amaximum eccentricity of 11° in the horizontal direction, and 9° in the
vertical direction. The fixation point in all tasks was a gray square 0.2°
in diameter; participants were instructed to maintain fixation on this
point throughout all experimental runs.

In the main task, shapes were displayed as gray silhouettes on a
gray background. For all participants except for the first participant
(S01), the shapes were darker than the background (shape = 31, back-
ground = 50; luminance values are in the range 0–255). For S01, the
shapes were lighter than the background (shape = 230, background =
77). The change in parameters was made because the brighter stimuli
shown to S01 led to display artifacts when scanning subsequent par-
ticipants, and darker stimuli reduced these artifacts. S01 reported no
artifacts and performed well on the task. No gamma correction was
performed.

Main task design
Themain experimental task consisted of categorizing shape silhouette
stimuli (Fig. 1) into binary categories. Therewere three task conditions:
Linear-1, Linear-2, and Nonlinear, each of which corresponded to a
different binary categorization rule. Shape stimuli were drawn from a
two-dimensional shape space coordinate system (see Shape stimuli).
The Linear-1 and Linear-2 tasks used a boundary that was linear in
this shape space, while the Nonlinear task used a boundary that was
non-linear in this shape space (requiring participants to group non-
adjacent quadrants into a single category, see Fig. 1 for illustration).
Each trial consisted of the presentation of one shape for 1 s, and trials
were separatedby an inter-trial interval (ITI) thatwas variable in length,
uniformly sampled from the interval 1–5 s. Participants responded on
each trial with a button press (right index ormiddle finger) to indicate
which binary category the currently viewed shape fell into; the map-
ping between category and response was counter-balanced within
each scanning session. Participants were allowed to make a response
anytime within the window of 2 s from stimulus onset. Feedback was
given at the end of each run, and included the participant’s overall
accuracy, as well as their accuracy broken down into “easy” and “hard”
trials (see next paragraph for description of hard trials), and the
number of trials on which they failed to respond. No feedback was
given after individual trials.

Each run in the task consisted of 48 trials and lasted 261 s (327
TRs). Of the 48 trials, 32 of theseused shapes thatwere sampled froma

grid of 16 points evenly spaced within shape space (“main grid”, see
Shape stimuli), each repeated twice. These 16 shapes were presented
twice per run regardless of task condition. The remaining 16 trials
(referred to as “hard” trials) used shapes that were variable depending
on the current task condition and the difficulty level set by the
experimenter. The purpose of these trials was to allow the difficulty
level to be controlled by the experimenter so that task accuracy could
be equalized across all task conditions, and prevent any single task
frombeing trivially easy for each participant. For each run of each task,
the experimenter selected a difficulty level between 1 and 13, with
each level corresponding to a particular bin of distances from the
active categorization boundary (higher difficulty denotes closer
distance to boundary). These difficulty levels were adjusted on each
run during the session by the experimenter, based on performance
on the previous run, with the goal of keeping the participant accu-
racy values within a stable range for all tasks (target range was
around 80% accuracy). For the Nonlinear task, the distance was
computed as a linear distance to the nearest boundary. The “hard”
trials were generated by randomly sampling 16 shapes from the
specified distance bin, with the constraint that 4 of the shapes had
to come from each of the four quadrants in shape space. This
manipulation ensured that responses were balanced across cate-
gories within each run. For many of the analyses presented here, we
excluded these hard trials, focusing only on the “main grid” trials
where the same images were shown across all task conditions.

Participants performed 12 runs of the main task within each
scanning session, for a total of 36 runs across all 3 sessions (with the
exception of one participant (S06) for whom 3 runs aremissing due to
a technical error). The 12 runs in each session were divided into 6 total
“parts” where each part consisted of a pair of 2 runs having the same
task condition and the same response mapping (3 conditions × 2
response mappings = 6 parts). Each part was preceded by a short
training run, which consisted of 5 trials, each trial consisting of a shape
drawn from the main grid. The scanner was not on during these
training runs, and the purpose of these was to remind the participant
of both the currently active task and the responsemapping before they
began performing the task runs for that part. The order in which the 6
parts were shown was counter-balanced across sessions. Before each
scan run began, the participant was again reminded of the current task
and response mapping via a display that presented four prototype
shapes, one for each shape space quadrant (see Shape stimuli for
details on prototype shapes). The prototypes were arranged with two
to the left of fixation and two to the right of fixation, and the partici-
pant was instructed that the two leftmost shapes corresponded to the
index finger button and the two rightmost shapes corresponded to the
middle finger button. This display of prototype shapes was also used
during the training runs to provide feedback after each trial: after each
training trial, the four prototype shapes were shown, and the two
prototypes corresponding to the correct category were outlined in
green, with accompanying text that indicated whether the partici-
pant’s responsewas correct or incorrect. This feedbackdisplaywas not
shown during the actual task runs.

Before the scan sessions began, participants were trained to
perform the shape categorization tasks in a separate behavioral
session (training session took place on average 4.0 days before the
first scan session). During this behavioral training session, partici-
pants performed the same task that they performed in the scanner,
including 12 main task runs (2 runs for each combination of condi-
tion and response mapping; i.e., each of the 6 parts). As in the scan
sessions, each part was preceded by training runs that consisted of 5
trials, each accompanied by feedback. Participants completed
between 1 and 3 training runs before starting each part. Average
training session accuracy was 0.81 ± 0.02 (mean ± SEM across 10
participants) for the Linear-1 task, 0.81 ± 0.02 for the Linear-2 task,
and 0.78 ± 0.02 for the Nonlinear task.
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Silhouette localizer task
A silhouette localizer task was used to identify voxels that were
responsive to all the regions of retinotopic space where the shape
stimuli could appear. For this task, a single silhouette shape was gen-
erated that covered the area spanned by any shape in the main grid.
The silhouette region was rendered with a black-and-white flashing
checkerboard (spatial period = 2°) against a mid-gray background. On
each trial, the flashing checkerboard silhouette stimulus appeared for
a total duration of 7 s, with trials separated by an ITI that varied
between 2 and 8 s (uniformly sampled). During each trial the check-
erboard was flashed with a frequency of 5Hz (1 cycle = on for 100ms,
off for 100ms). On each cycle, the checkerboard was re-drawn with a
randomized phase. There were 20 trials per run of this task, and par-
ticipants performed between 4 and 7 runs of this task across all ses-
sions. During all runs of this task, participants were instructed to
monitor for a contrast dimming event and press a button when the
dimming occurred. Dimming events occurred with a probability of
0.10 on each frame, and were separated by a minimum of 4 cycles.
There were on average 17 dimming events in each run (minimum 10;
maximum 25). Average hit rate (proportion of events correctly
detected) was 0.69 ±0.07 (mean ± SEM across 10 participants), and
the averagenumber of false alarmsper runwas3.42 ± 1.41 (mean± SEM
across 10 participants).

Image similarity analysis
Toestimate the perceptual discriminability of our shape categories,we
used two computer visionmodels to extract activations in response to
each stimulus image. We first used the GISTmodel31, which is based on
Gabor filters and captures low-level spectral image properties. We also
extracted features from a pre-trained SimCLR model32, which is a self-
supervised model trained using contrastive learning on a large image
database. We selected these two models because the GIST model
captures clearly defined image properties similar to those represented
in the early visual system, while the SimCLRmodel can capture a wider
set of image features, including mid-level and high-level properties.
The GIST model was implemented inMatlab, using a 4 × 4 spatial grid,
4 spatial scales, and 4 orientations per spatial scale. The version of
SimCLR that we used was implemented in PyTorch and used a ResNet-
50 backbone (pre-trained model downloaded from https://pypi.org/
project/simclr/). We extracted activations from blocks 2, 6, 12, and 15,
and performed a max-pooling operation (kernel size = 4, stride = 4) to
reduce the size of activations from each block. We used principal
components analysis (PCA) to further reduce the size of activations,
retaining amaximumof 500 components per block, and concatenated
the resulting features across all blocks.

Using these activations, we computed the separability of shape
categories across eachof our boundaries (Linear-1, Linear-2, Nonlinear)
by computing all pairwise Euclidean distances between main grid
shapes in the same category (within-category distances) andmain grid
shapes in different categories (between-category distances). We then
computed the average of the within-category distances (w) and
between-category distances (b). The separability measure for each
boundary was computed as: (b−w)/(b+w).

Multivariate classifier analysis
We used a multivariate classifier to estimate how well the voxel acti-
vation patterns from each ROI could be used to discriminate different
shape stimuli. We performed three different types of binary classifi-
cation (Linear-1, Linear-2, Nonlinear), as well as 16-way multinomial
classification, and the following details apply to all classifier types.
Classification was performed within each participant, each ROI, and
each task condition separately. Before training the classifier, wemean-
centered the activation patterns on each trial, by subtracting the
average signal across voxels from each trial. We cross-validated the
classifier by leaving one run out at a time during training, looping over

held-out test runs so that every run served as the test run once. During
training of the classifier, we used only trials on whichmain grid shapes
were shown. For the 16-way classifier, we treated each of the 16 unique
shapes as distinct classes. For the binary classifiers, we split the
16 shapes into two classes according to either the Linear-1 category
boundary, the Linear-2 category boundary, or the Nonlinear category
boundary. Using these class labels, we then constructed a logistic
regression classifier, implemented using scikit-learn (version 1.0.2) in
Python 3.6. We used the ‘lbfgs’ solver and L2 regularization. To select
the L2 regularization parameter (C), we created a grid of 20 candidate
C values that were logarithmically spaced between 10−9 and 1. We then
used nested cross-validation on the training data only to select the C
resulting in highest accuracy across folds, and re-fit the model for the
entire training set using the best C parameter. The resulting classifier
was then used to predict the class (1–2, or 1–16) for all trials in the test
dataset (note that this included trials where the viewed shape was not
in the main grid, and thus was not included in classifier training). In
addition to a predicted class for each trial, the classifier returned a
continuous probability estimate for each of the classes, obtained using
a softmax function.

To evaluatewhether the accuracyof the classifierwas significantly
greater than chance, we used a permutation test. To do this, we per-
formed 1000 iterations of training and testing the classifier, con-
structed in the same way as described above, using shuffled labels for
the data. We always performed shuffling within a given scan run, so
that the run labels were kept intact, and leave-run-out cross-validation
was performed as in the original method. To make this computation-
ally feasible, we did not perform C selection on every shuffling itera-
tion, insteadwe used a fixed C value of 0.023 (for the 16-way classifier)
or 0.007 (for each of the 2-way classifiers), which were approximately
the median of the C values obtained across all models fit to the real
data. We obtained a p-value for each individual participant, ROI, and
task condition by computing the proportion of shuffle iterations on
which shuffled classifier accuracy was greater than or equal to the real
classifier accuracy. To obtain p-values for the participant-averaged
classification accuracy for each ROI and task, we used the same pro-
cedure but first averaged the values across participants, within each
shuffle iteration. All reported p-values were false-discovery-rate (FDR)
corrected at q = 0.0175.

To ensure that differences in representations across ROIs were
not driven by differences in the number of voxels in each ROI (see
Supplementary Table 4), we performed an additional decoding
analysis in which voxel number was controlled. This was done on a
within-participant basis, such that we chose the smallest ROI in each
participant, and subsampled the voxels in all other ROIs tomatch the
size of that ROI. This choice ensured that we maximized power for
the decoder in all participants, while still controlling for ROI sizes
within each participant. Voxels were selected based on their
responses in the Silhouette localizer task (see Silhouette localizer task
for details), using t-statistics computed for a contrast of stimulus on
versus off.

Confusion matrix analysis
For each participant, ROI, and task, we generated a confusion matrix
for the 16-way multinomial classifier. This was a 16 × 16 matrix where
each row represents the set of trials on which a given shape was
actually shown, and each column in the row represents the proportion
of those trials that the classifier assigned into each of the 16 classes,
and each row sums to 1. To compute confusion matrices we used only
trials in the main grid, and only used trials on which the participant
made a correct behavioral response. To quantify the alignment of
confusion matrices with the representation needed to solve each task,
we generated template confusionmatrices for the Linear-1 and Linear-
2 tasks, where each templatematrix had0 for pairs of stimuli that were
on different sides of the boundary and 1 for pairs of stimuli that were
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on the same side of the boundary. We then computed the Pearson
correlation coefficient between each actual confusionmatrix and each
template confusion matrix. Finally, we applied a Fisher z-transform to
these correlation coefficient values, using the inverse hyperbolic tan-
gent function (arctanh).

Classifier confidence
To obtain a continuous estimate of the discriminability of shapes
belonging to different binary categories, we computed a measure we
term “classifier confidence”, which is based on the continuous prob-
ability estimates output by each binary or 16-way classifier. For each
boundary and each individual trial, our measure of classifier con-
fidence was computed as the difference between the total probability
assigned by the classifier to the “correct” binary category for that trial
[p(correct)] and the total probability assigned by the classifier to the
“incorrect” binary category for that trial [p(incorrect)]. For each of the
binary classifiers, it is straightforward to compute p(correct) and
p(incorrect) based on the probability assigned to eachbinary class. For
the 16-way classifier, we obtained p(correct) by summing the prob-
ability assigned to the 8 main grid shapes in the same category as the
shape on the current trial (based onwhichever category boundarywas
currently being considered), and p(incorrect) by summing the prob-
ability assigned to the 8 main grid shapes in the other category. This
allowed us to compute classifier confidence from the 16-way classifier,
with respect to each of the three category boundaries. Note that this
measure of confidence can be computed evenwhen the test trial shape
is not part of the main grid. To interpret this measure, large positive
values of confidence indicate high discriminability of shapes across a
given category boundary, and large negative or zero values indicate
poor discriminability.

For the analyses where confidence values are broken down by “far”
and “near” trials, the far and near trials are always restricted to positions
in the main grid. For the Linear-1 and Linear-2 tasks, there are 8 total
positions counted as far and 8 counted as near. For the Nonlinear task,
we counted the 4 corner positions as far and the 12 other positions as
near. When average confidence values are reported, they are averaged
over behaviorally correct trials only (unless otherwise specified).

Bootstrap resampling procedures
When comparing classifier confidence values between correct and
incorrect trials, we used bootstrap resampling to match the distribu-
tion of shape positions sampled on correct versus incorrect trials. This
controls for the possibility that correct and incorrect trials had dif-
ferent stimulus properties; for example, harder trials would be more
likely to be incorrect. The difference in stimulus properties could have,
if not corrected, contributed to a difference in average confidence
between correct and incorrect trials. This analysis was done using only
“hard” trials (i.e., trials close to the boundary andnot on themaingrid),
because these had the highest rate of incorrect responses. To perform
resampling, for each boundary we collapsed the set of coordinates
sampledon the “hard” trials onto a single axis that ranperpendicular to
the boundary of interest. For the Nonlinear task, instead of collapsing
coordinates onto a single axis, we computed the distance between
each [x,y] coordinate and the nearest linear boundary, and multiplied
by (+1) for coordinates innonlinear category 1 or (−1) for coordinates in
nonlinear category 2, which results in a single coordinate value that
captures distance from the boundary as well as category sign. We then
binned these coordinates into a set of 12 linearly-spaced bins that
spanned the portion of shape space nearest the boundary (from 1.8 to
3.2 in shape space coordinates; see Shape stimuli). For eachparticipant
and task, we then identified a subset of these 12 bins thatwere sampled
on both correct and incorrect trials, and were also symmetric around
the categorization boundary. We then performed 1000 iterations on
which we resampled with replacement a set of approximately 100
correct trials and approximately 100 incorrect trials that each evenly

sampled from all bins, and computed the average classifier confidence
for this resampled set. The final confidence values for each participant
reflect the average across these 1000 bootstrapping iterations.

Statistical analysis
To perform statistical comparisons of classifier confidence values and
template correlation coefficient values (see previous sections) across
ROIs and categorization tasks, we used repeated measures ANOVA
tests, implemented using statsmodels in Python 3.6. To obtain non-
parametric p-values for these tests (which are suitable to ensure that
any violations of the assumptions of the parametric tests do not bias
the results), we performed permutation tests where we shuffled the
values within eachparticipant 10,000 times, and computed F-statistics
for each effect on the shuffled data. This resulted in a null distribution
of F-values for each effect. The final p-values for each effectwerebased
on the proportion of iterations on which the shuffled F-statistic was
greater than or equal to the real F-statistic. F-statistics reported in the
text reflect those obtained using the real (unshuffled) data. This pro-
cedure for obtaining non-parametric p-values is similar to previous
work (e.g., refs. 76–80); we also observed qualitatively similar results
when using a parametric significance test as this permutation-based
approach is more conservative.

To perform post-hoc tests for differences between tasks in each
ROI, we used a paired t-test with permutation. For each ROI, we com-
puted a t-statistic for the truedifferencebetween the conditions across
participants, then performed 10,000 iterations where we randomly
swapped the values within each participant across conditions, with
50% probability. This resulted in a null distribution of t-statistics. The
final two-tailed p-value was obtained by computing the proportion of
iterations on which the shuffled t-statistic was greater than or equal to
the real t-statistic and the proportion of iterations on which the real t-
statistic was greater than or equal to the shuffled t-statistic, taking the
minimum and multiplying by 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the present study have been deposited in an Open
Science Framework repository (https://osf.io/fa8jk/). Source data are
provided with this paper.

Code availability
All code required to reproduce our analyses is available at https://
github.com/mmhenderson/shapeDim.
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