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COMMENTARY

Visual input statistics and behavioral relevance jointly constrain higher visual 
cortex organization
Margaret M. Henderson a,b,c

aDepartment of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; bNeuroscience Institute, Carnegie Mellon University, Pittsburgh, 
PA, USA; cMachine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT
Ritchie and colleagues propose that the functional organization of higher visual cortex is best 
understood through the lens of behavioral relevance, advocating for a shift away from theories 
that center around category selectivity. Building on this, I suggest the statistical structure of visual 
inputs acts as an additional critical constraint on visual cortex, and that a complete understanding 
of visual system organization must account for input statistics and how they interact with 
behavioral relevance. I discuss this using cortical food selectivity as a case study, and additionally 
describe how deep neural networks can provide new avenues for testing these theories.
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I am in general agreement with the perspective of 
(Ritchie et al., this issue) namely that the emphasis on 
category selectivity can be artificially restrictive, and that 
an ecologically-grounded understanding of visual cortex 
requires consideration of a wider space of tasks. Many of 
these tasks require analysis of non-categorical stimulus 
properties and include dynamic shifts in behavioral rele
vance (Bracci & de Beeck, 2023; Desimone & Duncan,  
1995; Henderson et al., 2025; Hong et al., 2016; Kay et al.,  
2023).

At the same time, however, visual cortex is also 
inherently subject to constraints in the ‘bottom-up’ 
direction, encompassing the statistical distribution of 
visual properties in natural inputs, and how those 
properties co-vary with behavioral relevance. For 
example, low-level and intermediate visual properties 
are encoded across higher visual cortex in ways that 
reflect the co-occurrence statistics of visual and 
semantic properties: face-selective cortical areas are 
selective for features that characterize face images, 
such as low spatial frequency and curved contours 
(Henderson et al., 2023; Ponce et al., 2017; Srihasam 
et al., 2014; Yue et al., 2014, 2020), while scene- 
selective areas are biased toward mid-level properties 
that characterize scenes, such as cardinal (vertical and 
horizontal) orientations, rectilinear contours, and high 
spatial frequency (Henderson et al., 2023; Li & Bonner,  
2021; Nasr & Tootell, 2012; Nasr et al., 2014; Rajimehr 
et al., 2011). In line with Ritchie et al., the 

interpretation of such findings need not be restricted 
to a category-selective framework; a more general 
interpretation is that higher visual regions preferen
tially represent input components that are relevant 
for downstream tasks.

In addition to visuo-semantic co-occurrence statistics, 
input statistics may also constrain higher visual cortex in 
a more generic way, such that the dimensions encoded 
across visual cortex capture variance across all inputs, 
regardless of their semantic meaning or category. For 
example, cardinal orientation biases in V1 (Appelle,  
1972; Barlow, 1961; Girshick et al., 2011; Henderson & 
Serences, 2021; Li et al., 2003) likely reflect alignment of 
neural codes with the distribution of features in generic 
visual inputs. Alignment of neural codes with high-input 
-variance dimensions may provide a mechanism for effi
ciently representing stimuli in a format that flexibly sup
ports a range of downstream tasks (Barlow, 1961; Konkle 
& Alvarez, 2022; Olshausen & Field, 1996). These generic 
image dimensions may in some cases be correlated with 
behaviorally-relevant dimensions (e.g., curvature statis
tics and animacy; Bracci & de Beeck, 2023; Long et al.,  
2018; Ponce et al., 2017; Yue et al., 2014), but in other 
cases may be unrelated. Generic input statistics and 
behavioral relevance thus provide distinct and poten
tially opposing constraints, with relative importance 
likely varying between early and higher visual cortex, 
and between higher areas involved in different task- 
specific networks.
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As a case study for how input statistics and beha
vioral relevance interact, recent evidence for food- 
selective regions in ventral visual cortex (Bannert & 
Bartels, 2022; Jain et al., 2023; Khosla et al., 2022; 
Pennock et al., 2023) may provide an informative 
example. The observed food-selective regions overlap 
partially with color-selective areas (Pennock et al.,  
2023), potentially reflecting the warm, saturated color 
statistics associated with food objects (Conway, 2018; 
Lafer-Sousa et al., 2016; Rosenthal et al., 2018). At the 
same time, color is not required to elicit food-selective 
responses (Jain et al., 2023), and, beyond color, there 
may not be many intermediate visual properties that 
reliably distinguish food from non-food objects, parti
cularly when considering cross-cultural diversity in 
food appearance. That is, despite the high behavioral 
relevance of food, it is unlikely that clustering by simi
larity in a task-agnostic feature space would be suffi
cient to give rise to a food-selective dimension in 
visual cortex. We have argued (Henderson et al.,  
2025) that nonvisual constraints, including reward pro
cessing (Rolls, 2023), multi-modal olfactory and gusta
tory cues (Avery et al., 2021; Simmons et al., 2005), 
food-related affordances (Gallivan & Culham, 2015; 
Mahon & Almeida, 2024), and social cues associated 
with early learning about food (Amodio & Frith, 2006; 
Pitcher & Ungerleider, 2021), may serve as additional 
constraints that interact with visual properties like 
color, giving rise to food-selective regions in the 
adult brain. The role of these nonvisual constraints 
(i.e., behavioral relevance) may play a larger role for 
food than for other categories, such as faces and 
words, for which visual similarity may be better aligned 
with the behavioral relevance of stimuli.

Notably, Ritchie et al. argue that reports of food 
selectivity may reflect a mis-interpretation, suggesting 
food-selective regions encode food not as an input cate
gory, but in terms of its affordances, citing the similarity 
between cortical representations of graspable foods and 
tools (Ritchie et al., 2024) as evidence. In regard to this 
point, I note that while some foods share affordance 
properties with some tools (i.e., grasping), the complete 
space of behaviorally-relevant properties associated 
with food is non-overlapping with that for tool objects – 
for example, food is associated with reward circuitry 
(Rolls, 2023), food is not always directly graspable, and 
food has distinct taste and smell associations (Avery 
et al., 2021; Henderson et al., 2025; Simmons et al.,  
2005). Input statistics also differentiate these categories: 
food perception may be more dependent on color and 
material properties relative to tools (Lavin & Hall, 2001; 
Sato, 2021; Shutts et al., 2009). These non-overlapping 
constraints suggest partially dissociable cortical circuits 

supporting food and tool perception, although more 
empirical work is needed to test this.

More broadly, how can the relative importance of 
input statistics and behavioral relevance as constraints 
on visual cortex be disentangled? Recent advances in 
deep neural networks (DNNs), particularly self- 
supervised learning (SSL) and multimodal learning, 
provide new means of testing this. Recent work sug
gests that training DNNs using SSL on large-scale 
datasets via methods like contrastive learning (e.g., 
Chen et al., 2020) can result in feature spaces that 
align well with higher visual areas (Conwell et al.,  
2024; Konkle & Alvarez, 2022; Prince et al., 2024; 
Wang et al., 2023; Zhuang et al., 2021), supporting 
the theory that task-agnostic input statistics may be 
sufficient to guide higher visual cortex organization. 
On the other hand, evidence suggests multimodal 
language-aligned models (i.e., models that learn to 
produce similar embeddings for an image and its 
natural language caption; Radford et al., 2021), better 
predict fMRI responses in anterior regions of ventral 
visual cortex compared to self-supervised vision-only 
models (Wang et al., 2023). This supports a framework 
in which behaviorally-relevant semantics provide an 
important constraint on anterior regions. Training 
multimodal DNNs to jointly model images and cap
tions may provide at least a partial approximation of 
how the visual system learns to compute behaviorally- 
relevant properties, as captions include descriptions of 
rich semantic attributes that are not captured by ear
lier category-based supervised learning tasks (e.g., 
ImageNet; Deng et al., 2009). As SSL and multimodal 
deep learning methods continually advance, these 
models will provide a rich set of tools for modeling 
the space of real-world constraints, both input and 
task-related, that may give rise to biological visual 
representations.

Acknowledgments

The author thanks Leila Wehbe and Michael Tarr for helpful 
feedback on this article. Funding support was provided by 
a startup fund from the Carnegie Mellon Department of 
Psychology.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by a startup fund from the Carnegie 
Mellon University Department of Psychology.

2 M. M. HENDERSON



ORCID

Margaret M. Henderson http://orcid.org/0000-0001-9375- 
6680

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The 
medial frontal cortex and social cognition. Nature Reviews 
Neuroscience, 7(47), 268–277. https://doi.org/10.1038/ 
nrn1884  

Appelle, S. (1972). Perception and discrimination as a function 
of stimulus orientation: The “oblique effect” in man and 
animals. Psychological Bulletin, 78(4), 266–278.

Avery, J. A., Liu, A. G., Ingeholm, J. E., Gotts, S. J., & Martin, A. 
(2021). Viewing images of foods evokes taste quality-specific 
activity in gustatory insular cortex. Proceedings of the 
National Academy of Sciences. 118(2): e2010932118.

Bannert, M. M., & Bartels, A. (2022). Visual cortex: Big data 
analysis uncovers food specificity. Current Biology, 32(19), 
R1012–R1015. https://doi.org/10.1016/j.cub.2022.08.068  

Barlow, H. B. (1961). Possible principles underlying the trans
formations of sensory messages. In W. A. Rosenblith (Ed.), 
Sensory communication (Vol. 13, pp. 217–234). Chap. MIT 
Press.

Bracci, S., & de Beeck, H. P. O. (2023). Understanding human 
object vision: A picture is worth a thousand representations. 
Annual Review of Psychology, 74(1), 113–135. https://doi.org/ 
10.1146/annurev-psych-032720-041031  

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A Simple 
Framework for Contrastive Learning of Visual Representations. 
International Conference on Machine Learning Vienna, Austria. 
https://arxiv.org/abs/2002.05709 

Conway, B. R. (2018). The organization and operation of inferior 
temporal cortex. Annual Review of Vision Science, 4(1), 
381–402. https://doi.org/10.1146/annurev-vision-091517- 
034202  

Conwell, C., Prince, J. S., Kay, K. N., Alvarez, G. A., & Konkle, T. 
(2024). A large-scale examination of inductive biases shap
ing high-level visual representation in brains and machines. 
Nature Communications, 15(9383). https://doi.org/10.1038/ 
s41467-024-53147-y  

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). 
ImageNet: A large-scale hierarchical image database. IEEE 
Conference on Computer Vision and Pattern Recognition. 
Miami, FL, 248–255.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selec
tive visual attention. Annual Review of Neuroscience, 18, 
193–222. https://doi.org/10.1146/annurev.ne.18.030195. 
001205  

Gallivan, J. P., & Culham, J. C. (2015). Neural coding within 
human brain areas involved in actions. Current Opinion in 
Neurobiology, 33, 141–149. https://doi.org/10.1016/j.conb. 
2015.03.012  

Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal 
rules: Visual orientation perception reflects knowledge of 
environmental statistics. Nature Neuroscience, 14.7(7), 
926–932. https://doi.org/10.1038/nn.2831  

Henderson, M. M., Tarr, M. J., & Wehbe, L. (2025). Origins of food 
selectivity in human visual cortex. Trends in Neurosciences, 48 
(2), 113–123. https://doi.org/10.1016/j.tins.2024.12.001  

Henderson, M. M., & Serences, J. T. (2021). Biased orientation 
representations can be explained by experience with non
uniform training set statistics. Journal of Vision, 21(8), 10–10.  
https://doi.org/10.1167/jov.21.8.10  

Henderson, M. M., Serences, J. T., & Rungratsameetaweemana, N. 
(2025). Dynamic categorization rules alter representations in 
human visual cortex. Nature Communications, 16(1), 3459.  
https://doi.org/10.1038/s41467-025-58707-4  

Henderson, M. M., Tarr, M. J., & Wehbe, L. (2023). Low-level 
tuning biases in higher visual cortex reflect the semantic 
informativeness of visual features. Journal of Vision, 23(4), 
8–8. https://doi.org/10.1167/jov.23.4.8  

Hong, H., Yamins, D. L. K., Majaj, N. J., & DiCarlo, J. J. (2016). 
Explicit information for category-orthogonal object proper
ties increases along the ventral stream. Nature Neuroscience, 
19(4), 613–622. https://doi.org/10.1038/nn.4247  

Jain, N., Wang, A., Henderson, M. M., Lin, R., Prince, J. S., 
Tarr, M. J., & Wehbe, L. (2023). Selectivity for food in 
human ventral visual cortex. Communications Biology, 6 
(125).

Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J., & Barack, D. L. 
(2023). Tasks and their role in visual neuroscience. Neuron, 
111(11), 1697–1713. https://doi.org/10.1016/j.neuron.2023. 
03.022  

Khosla, M., Murty, N. A. R., & Kanwisher, N. (2022). A highly 
selective response to food in human visual cortex revealed 
by hypothesis-free voxel decomposition. Current Biology, 32 
(19), 4159–4171.e9. https://doi.org/10.1016/j.cub.2022.08. 
009  

Konkle, T., & Alvarez, G. A. (2022). A self-supervised domain- 
general learning framework for human ventral stream repre
sentation. Nature Communications 13(491).

Lafer-Sousa, R., Conway, B. R., & Kanwisher, N. G. (2016). Color- 
biased regions of the ventral visual pathway lie between 
face- and place-selective regions in humans, as in macaques. 
The Journal of Neuroscience, 36(5), 1682–1697. https://doi. 
org/10.1523/JNEUROSCI.3164-15.2016  

Lavin, T. A., & Hall, D. G. (2001). Domain effects in lexical 
development: Learning words for foods and toys. Cognitive 
Development, 16(4), 929–950. https://doi.org/10.1016/ 
S0885-2014(02)00070-9  

Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: 
A neural basis in the visual cortex. Journal of 
Neurophysiology, 90(1), 204–217. https://doi.org/10.1152/jn. 
00954.2002  

Li, D. S. P., & Bonner, M. F. (2021). Emergent selectivity for 
scenes, object properties, and contour statistics in feedfor
ward models of scene-preferring cortex. BioRxiv. https://doi. 
org/10.1101/2021.09.24.461733 

Long, B., Yu, C. P., & Konkle, T. (2018). In Proceedings of the 
National Academy of Sciences of the United States of America 
(Vol. 115, pp. E9015–E9024).

Mahon, B. Z., & Almeida, J. (2024). Reciprocal interactions 
among parietal and occipitotemporal representations sup
port everyday object-directed actions. Neuropsychologia, 
198, 108841. https://doi.org/10.1016/j.neuropsychologia. 
2024.108841  

Nasr, S., Echavarria, C. E., & Tootell, R. B. H. (2014). Thinking 
outside the box: Rectilinear shapes selectively activate 
scene-selective cortex. The Journal of Neuroscience, 34(20), 
6721–6735.

COGNITIVE NEUROSCIENCE 3

https://doi.org/10.1038/nrn1884
https://doi.org/10.1038/nrn1884
https://doi.org/10.1016/j.cub.2022.08.068
https://doi.org/10.1146/annurev-psych-032720-041031
https://doi.org/10.1146/annurev-psych-032720-041031
https://arxiv.org/abs/2002.05709
https://doi.org/10.1146/annurev-vision-091517-034202
https://doi.org/10.1146/annurev-vision-091517-034202
https://doi.org/10.1038/s41467-024-53147-y
https://doi.org/10.1038/s41467-024-53147-y
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1038/nn.2831
https://doi.org/10.1016/j.tins.2024.12.001
https://doi.org/10.1167/jov.21.8.10
https://doi.org/10.1167/jov.21.8.10
https://doi.org/10.1038/s41467-025-58707-4
https://doi.org/10.1038/s41467-025-58707-4
https://doi.org/10.1167/jov.23.4.8
https://doi.org/10.1038/nn.4247
https://doi.org/10.1016/j.neuron.2023.03.022
https://doi.org/10.1016/j.neuron.2023.03.022
https://doi.org/10.1016/j.cub.2022.08.009
https://doi.org/10.1016/j.cub.2022.08.009
https://doi.org/10.1523/JNEUROSCI.3164-15.2016
https://doi.org/10.1523/JNEUROSCI.3164-15.2016
https://doi.org/10.1016/S0885-2014(02)00070-9
https://doi.org/10.1016/S0885-2014(02)00070-9
https://doi.org/10.1152/jn.00954.2002
https://doi.org/10.1152/jn.00954.2002
https://doi.org/10.1101/2021.09.24.461733
https://doi.org/10.1101/2021.09.24.461733
https://doi.org/10.1016/j.neuropsychologia.2024.108841
https://doi.org/10.1016/j.neuropsychologia.2024.108841


Nasr, S., & Tootell, R. B. H. (2012). “A cardinal orientation bias in 
scene-selective visual cortex”. The Journal of Neuroscience, 
32(43), 14921–14926. https://doi.org/10.1523/JNEUROSCI. 
2036-12.2012  

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell 
receptive field properties by learning a sparse code for 
natural images. Nature, 381(6583), 607–609. https://doi.org/ 
10.1038/381607a0  

Pennock, I. M. L., Racey, C., Allen, E. J., Wu, Y., Naselaris, T., 
Kay, K. N., Franklin, A., & Bosten, J. M. (2023). Color-biased 
regions in the ventral visual pathway are food selective. 
Current Biology: CB, 33(1), 134–146.e4. https://doi.org/10. 
1016/j.cub.2022.11.063  

Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third 
visual pathway specialized for social perception. Trends in 
Cognitive Sciences, 25(2), 100–110. https://doi.org/10.1016/j. 
tics.2020.11.006  

Ponce, C. R., Hartmann, T. S., & Livingstone, M. S. (2017). End- 
stopping predicts curvature tuning along the ventral stream. 
The Journal of Neuroscience, 37(3), 648–659.

Prince, J. S., Alvarez, G. A., & Konkle, T. (2024). Contrastive 
learning explains the emergence and function of visual 
category-selective regions. Science Advances, 10(39), 10.39.  
https://doi.org/10.1126/sciadv.adl1776  

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., 
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., 
Krueger, G., & Sutskever, I. (2021). Learning Transferable 
Visual Models From Natural Language Supervision. 38th 
International Conference on Machine Learning (Vol. 139). 
https://doi.org/10.48550/arXiv.2103.00020 

Rajimehr, R., Devaney, K. J., Bilenko, N. Y., Young, J. C., & 
Tootell, R. B. H. (2011). The”parahippocampal place area” 
responds preferentially to high spatial frequencies in 
humans and monkeys. PLoS Biology, 9(4), 1000608. https:// 
doi.org/10.1371/journal.pbio.1000608  

Ritchie, J. B., Andrews, S. T., Vaziri-Pashkam, M., & Baker, C. I. 
(2024). Graspable foods and tools elicit similar responses in 
visual cortex. Cerebral Cortex, 34(9), bhae383. https://doi. 
org/10.1093/cercor/bhae383  

Rolls, E. T. (2023). The orbitofrontal cortex, food reward, body 
weight and obesity. Social Cognitive and Affective 
Neuroscience, 18(1), nsab044. https://doi.org/10.1093/scan/ 
nsab044  

Rosenthal, I., Ratnasingam, S., Haile, T., Eastman, S., Fuller- 
Deets, J., & Conway, B. R. (2018). Color statistics of objects, 
and color tuning of object cortex in macaque monkey. 
Journal of Vision, 18(11), 1–1. https://doi.org/10.1167/18.11.1  

Sato, W. (2021). Color’s indispensable role in the rapid detec
tion of food. Frontiers in Psychology, 12, 5442. https://doi. 
org/10.3389/fpsyg.2021.753654  

Shutts, K., Condry, K. F., Santos, L. R., & Spelke, E. S. (2009). Core 
knowledge and its limits: The domain of food. Cognition, 112 
(1), 120–140. https://doi.org/10.1016/j.cognition.2009.03. 
005  

Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of 
appetizing foods activate gustatory cortices for taste and 
reward. Cerebral Cortex, 15(10), 1602–1608. https://doi.org/ 
10.1093/cercor/bhi038  

Srihasam, K., Vincent, J. L., & Livingstone, M. S. (2014). Novel 
domain formation reveals proto-architecture in inferotem
poral cortex. Nature Neuroscience, 17(12), 1776–1783.  
https://doi.org/10.1038/nn.3855  

Wang, A. Y., Kay, K., Naselaris, T., Tarr, M. J., & Wehbe, L. (2023). 
Better models of human high-level visual cortex emerge 
from natural language supervision with a large and diverse 
dataset. Nature Machine Intelligence, 5(12 5), 1415–1426.  
https://doi.org/10.1038/s42256-023-00753-y  

Yue, X., Pourladian, I. S., Tootell, R. B. H., & Ungerleider, L. G. 
(2014). Curvature-processing network in macaque visual 
cortex. In Proceedings of the National Academy of Sciences 
of the United States of America (Vol. 111, p. E3467).

Yue, X., Robert, S., & Ungerleider, L. G. (2020). Curvature pro
cessing in human visual cortical areas. Neuroimage, 222, 
117295. https://doi.org/10.1016/j.neuroimage.2020.117295  

Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M. C., 
DiCarlo, J. J., & Yamins, D. L. K. (2021). Unsupervised neural 
network models of the ventral visual stream. In Proceedings 
of the National Academy of Sciences of the United States of 
America (Vol. 118).

4 M. M. HENDERSON

https://doi.org/10.1523/JNEUROSCI.2036-12.2012
https://doi.org/10.1523/JNEUROSCI.2036-12.2012
https://doi.org/10.1038/381607a0
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/j.cub.2022.11.063
https://doi.org/10.1016/j.cub.2022.11.063
https://doi.org/10.1016/j.tics.2020.11.006
https://doi.org/10.1016/j.tics.2020.11.006
https://doi.org/10.1126/sciadv.adl1776
https://doi.org/10.1126/sciadv.adl1776
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1371/journal.pbio.1000608
https://doi.org/10.1371/journal.pbio.1000608
https://doi.org/10.1093/cercor/bhae383
https://doi.org/10.1093/cercor/bhae383
https://doi.org/10.1093/scan/nsab044
https://doi.org/10.1093/scan/nsab044
https://doi.org/10.1167/18.11.1
https://doi.org/10.3389/fpsyg.2021.753654
https://doi.org/10.3389/fpsyg.2021.753654
https://doi.org/10.1016/j.cognition.2009.03.005
https://doi.org/10.1016/j.cognition.2009.03.005
https://doi.org/10.1093/cercor/bhi038
https://doi.org/10.1093/cercor/bhi038
https://doi.org/10.1038/nn.3855
https://doi.org/10.1038/nn.3855
https://doi.org/10.1038/s42256-023-00753-y
https://doi.org/10.1038/s42256-023-00753-y
https://doi.org/10.1016/j.neuroimage.2020.117295

	Abstract
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

