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ABSTRACT

Ritchie and colleagues propose that the functional organization of higher visual cortex is best
understood through the lens of behavioral relevance, advocating for a shift away from theories
that center around category selectivity. Building on this, | suggest the statistical structure of visual
inputs acts as an additional critical constraint on visual cortex, and that a complete understanding
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of visual system organization must account for input statistics and how they interact with
behavioral relevance. | discuss this using cortical food selectivity as a case study, and additionally
describe how deep neural networks can provide new avenues for testing these theories.

| am in general agreement with the perspective of
(Ritchie et al., this issue) namely that the emphasis on
category selectivity can be artificially restrictive, and that
an ecologically-grounded understanding of visual cortex
requires consideration of a wider space of tasks. Many of
these tasks require analysis of non-categorical stimulus
properties and include dynamic shifts in behavioral rele-
vance (Bracci & de Beeck, 2023; Desimone & Duncan,
1995; Henderson et al., 2025; Hong et al., 2016; Kay et al.,
2023).

At the same time, however, visual cortex is also
inherently subject to constraints in the ‘bottom-up’
direction, encompassing the statistical distribution of
visual properties in natural inputs, and how those
properties co-vary with behavioral relevance. For
example, low-level and intermediate visual properties
are encoded across higher visual cortex in ways that
reflect the co-occurrence statistics of visual and
semantic properties: face-selective cortical areas are
selective for features that characterize face images,
such as low spatial frequency and curved contours
(Henderson et al., 2023; Ponce et al., 2017; Srihasam
et al.,, 2014; Yue et al., 2014, 2020), while scene-
selective areas are biased toward mid-level properties
that characterize scenes, such as cardinal (vertical and
horizontal) orientations, rectilinear contours, and high
spatial frequency (Henderson et al., 2023; Li & Bonner,
2021; Nasr & Tootell, 2012; Nasr et al., 2014; Rajimehr

interpretation of such findings need not be restricted
to a category-selective framework; a more general
interpretation is that higher visual regions preferen-
tially represent input components that are relevant
for downstream tasks.

In addition to visuo-semantic co-occurrence statistics,
input statistics may also constrain higher visual cortex in
a more generic way, such that the dimensions encoded
across visual cortex capture variance across all inputs,
regardless of their semantic meaning or category. For
example, cardinal orientation biases in V1 (Appelle,
1972; Barlow, 1961; Girshick et al., 2011; Henderson &
Serences, 2021; Li et al., 2003) likely reflect alignment of
neural codes with the distribution of features in generic
visual inputs. Alignment of neural codes with high-input
-variance dimensions may provide a mechanism for effi-
ciently representing stimuli in a format that flexibly sup-
ports a range of downstream tasks (Barlow, 1961; Konkle
& Alvarez, 2022; Olshausen & Field, 1996). These generic
image dimensions may in some cases be correlated with
behaviorally-relevant dimensions (e.g., curvature statis-
tics and animacy; Bracci & de Beeck, 2023; Long et al,,
2018; Ponce et al., 2017; Yue et al., 2014), but in other
cases may be unrelated. Generic input statistics and
behavioral relevance thus provide distinct and poten-
tially opposing constraints, with relative importance
likely varying between early and higher visual cortex,
and between higher areas involved in different task-

et al, 2011). In line with Ritchie et al, the  specific networks.
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As a case study for how input statistics and beha-
vioral relevance interact, recent evidence for food-
selective regions in ventral visual cortex (Bannert &
Bartels, 2022; Jain et al., 2023; Khosla et al.,, 2022;
Pennock et al., 2023) may provide an informative
example. The observed food-selective regions overlap
partially with color-selective areas (Pennock et al.,
2023), potentially reflecting the warm, saturated color
statistics associated with food objects (Conway, 2018;
Lafer-Sousa et al.,, 2016; Rosenthal et al., 2018). At the
same time, color is not required to elicit food-selective
responses (Jain et al., 2023), and, beyond color, there
may not be many intermediate visual properties that
reliably distinguish food from non-food objects, parti-
cularly when considering cross-cultural diversity in
food appearance. That is, despite the high behavioral
relevance of food, it is unlikely that clustering by simi-
larity in a task-agnostic feature space would be suffi-
cient to give rise to a food-selective dimension in
visual cortex. We have argued (Henderson et al,
2025) that nonvisual constraints, including reward pro-
cessing (Rolls, 2023), multi-modal olfactory and gusta-
tory cues (Avery et al, 2021; Simmons et al.,, 2005),
food-related affordances (Gallivan & Culham, 2015;
Mahon & Almeida, 2024), and social cues associated
with early learning about food (Amodio & Frith, 2006;
Pitcher & Ungerleider, 2021), may serve as additional
constraints that interact with visual properties like
color, giving rise to food-selective regions in the
adult brain. The role of these nonvisual constraints
(i.e., behavioral relevance) may play a larger role for
food than for other categories, such as faces and
words, for which visual similarity may be better aligned
with the behavioral relevance of stimuli.

Notably, Ritchie et al. argue that reports of food
selectivity may reflect a mis-interpretation, suggesting
food-selective regions encode food not as an input cate-
gory, but in terms of its affordances, citing the similarity
between cortical representations of graspable foods and
tools (Ritchie et al., 2024) as evidence. In regard to this
point, | note that while some foods share affordance
properties with some tools (i.e., grasping), the complete
space of behaviorally-relevant properties associated
with food is non-overlapping with that for tool objects -
for example, food is associated with reward circuitry
(Rolls, 2023), food is not always directly graspable, and
food has distinct taste and smell associations (Avery
et al, 2021; Henderson et al., 2025; Simmons et al.,
2005). Input statistics also differentiate these categories:
food perception may be more dependent on color and
material properties relative to tools (Lavin & Hall, 2001;
Sato, 2021; Shutts et al., 2009). These non-overlapping
constraints suggest partially dissociable cortical circuits

supporting food and tool perception, although more
empirical work is needed to test this.

More broadly, how can the relative importance of
input statistics and behavioral relevance as constraints
on visual cortex be disentangled? Recent advances in
deep neural networks (DNNs), particularly self-
supervised learning (SSL) and multimodal learning,
provide new means of testing this. Recent work sug-
gests that training DNNs using SSL on large-scale
datasets via methods like contrastive learning (e.g.,
Chen et al, 2020) can result in feature spaces that
align well with higher visual areas (Conwell et al.,
2024; Konkle & Alvarez, 2022; Prince et al., 2024;
Wang et al, 2023; Zhuang et al., 2021), supporting
the theory that task-agnostic input statistics may be
sufficient to guide higher visual cortex organization.
On the other hand, evidence suggests multimodal
language-aligned models (i.e., models that learn to
produce similar embeddings for an image and its
natural language caption; Radford et al., 2021), better
predict fMRI responses in anterior regions of ventral
visual cortex compared to self-supervised vision-only
models (Wang et al., 2023). This supports a framework
in which behaviorally-relevant semantics provide an
important constraint on anterior regions. Training
multimodal DNNs to jointly model images and cap-
tions may provide at least a partial approximation of
how the visual system learns to compute behaviorally-
relevant properties, as captions include descriptions of
rich semantic attributes that are not captured by ear-
lier category-based supervised learning tasks (e.g.,
ImageNet; Deng et al., 2009). As SSL and multimodal
deep learning methods continually advance, these
models will provide a rich set of tools for modeling
the space of real-world constraints, both input and
task-related, that may give rise to biological visual
representations.
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